Retrieval Search backend¶
Available since 2.3.0
This feature was introduced in version 2.3.0.
For some large dataset search can take a lot of time and memory. To reduce this you can use FaissSearchIndex. To work with it install pip install mteb[faiss].
Usage example:
import mteb
from mteb.models import SearchEncoderWrapper
from mteb.models.search_encoder_index import FaissSearchIndex
model = mteb.get_model(...)
index_backend = FaissSearchIndex(model)
model = SearchEncoderWrapper(
model,
index_backend=index_backend
)
...
For example running minishlab/potion-base-2M on SWEbenchVerifiedRR took 694 seconds instead of 769.