DocumentUnderstanding¶
- Number of tasks: 66
JinaVDRAirbnbSyntheticRetrieval¶
Retrieve rendered tables from Airbnb listings based on templated queries. This dataset is created from the original Kaggle New York City Airbnb Open Data dataset.
Dataset: jinaai/airbnb-synthetic-retrieval_beir • License: cc0-1.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | ara, deu, eng, fra, hin, ... (10) | Web | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRArabicChartQARetrieval¶
Retrieve Arabic charts based on queries. This dataset is derived from the Arabic ChartQA dataset, reformatting the train split as a test split with modified field names such that it is compatible with the ViDoRe evaluation benchmark.
Dataset: jinaai/arabic_chartqa_ar_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | ara | Academic | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRArabicInfographicsVQARetrieval¶
Retrieve Arabic infographics based on queries. This dataset is derived from the Arabic Infographics VQA dataset, reformatting the train split as a test split with modified field names so it can be used in the ViDoRe evaluation benchmark.
Dataset: jinaai/arabic_infographicsvqa_ar_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | ara | Academic | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRArxivQARetrieval¶
Retrieve figures from scientific papers from arXiv based on LLM generated queries. This dataset is build upon the corresponding dataset from the ViDoRe Benchmark.
Dataset: jinaai/arxivqa_beir • License: cc-by-4.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Web | LM-generated | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRAutomobileCatelogRetrieval¶
Retrieve automobile marketing documents based on LLM generated queries. Marketing document from Toyota Japanese website featuring RAV4 and Corolla. The text_description column contains OCR text extracted from the images using EasyOCR.
Dataset: jinaai/automobile_catalogue_jp_beir • License: not specified • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | jpn | Engineering, Web | LM-generated | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRBeveragesCatalogueRetrieval¶
Retrieve beverages marketing documents based on LLM generated queries. This dataset was self-curated by searching beverage catalogs on Google search and downloading PDFs.
Dataset: jinaai/beverages_catalogue_ru_beir • License: not specified • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | rus | Web | LM-generated | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRCharXivOCRRetrieval¶
Retrieve charts from scientific papers based on human annotated queries. This dataset is derived from the CharXiv dataset, reformatting the test split with modified field names, so that it can be used in the ViDoRe benchmark.
Dataset: jinaai/CharXiv-en_beir • License: cc-by-sa-4.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Web | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRChartQARetrieval¶
Retrieve charts based on LLM generated queries. Source datasets https://huggingface.co/datasets/HuggingFaceM4/ChartQA
Dataset: jinaai/ChartQA_beir • License: not specified • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Web | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRDocQAAI¶
Retrieve AI documents based on LLM generated queries. This dataset is build upon the corresponding dataset from the ViDoRe Benchmark.
Dataset: jinaai/docqa_artificial_intelligence_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Web | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRDocQAEnergyRetrieval¶
Retrieve energy industry documents based on LLM generated queries. This dataset is build upon the corresponding dataset from the ViDoRe Benchmark.
Dataset: jinaai/docqa_energy_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Web | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRDocQAGovReportRetrieval¶
Retrieve government reports based on LLM generated queries. This dataset is build upon the corresponding dataset from the ViDoRe Benchmark.
Dataset: jinaai/docqa_gov_report_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Government | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRDocQAHealthcareIndustryRetrieval¶
Retrieve healthcare industry documents based on LLM generated queries. This dataset is build upon the corresponding dataset from the ViDoRe Benchmark. For more information regarding the filtering please read our paper or this discussion on github.
Dataset: jinaai/docqa_healthcare_industry_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Medical | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRDocVQARetrieval¶
Retrieve industry documents based on human annotated queries. This dataset is build upon the corresponding dataset from the ViDoRe Benchmark.
Dataset: jinaai/docvqa_beir • License: cc-by-4.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Web | LM-generated | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRDonutVQAISynHMPRetrieval¶
Retrieve medical records based on templated queries. Source dataset https://huggingface.co/datasets/warshakhan/donut_vqa_ISynHMP
Dataset: jinaai/donut_vqa_beir • License: not specified • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Medical | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDREuropeanaDeNewsRetrieval¶
Retrieve German news articles based on LLM generated queries. This dataset was created from records of the Europeana online collection by selecting scans of German news articles
Dataset: jinaai/europeana-de-news_beir • License: cc0-1.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | deu | News | LM-generated | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDREuropeanaEsNewsRetrieval¶
Retrieve Spanish news articles based on LLM generated queries. This dataset was created from records of the Europeana online collection by selecting scans of Spanish news articles
Dataset: jinaai/europeana-es-news_beir • License: cc0-1.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | spa | News | LM-generated | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDREuropeanaFrNewsRetrieval¶
Retrieve French news articles from Europeana based on LLM generated queries. This dataset was created from records of the Europeana online collection by selecting scans of French news articles.
Dataset: jinaai/europeana-fr-news_beir • License: cc0-1.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | fra | News | LM-generated | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDREuropeanaItScansRetrieval¶
Retrieve Italian historical articles based on LLM generated queries. This dataset was created from records of the Europeana online collection by selecting scans of Italian news articles
Dataset: jinaai/europeana-it-scans_beir • License: cc0-1.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | ita | News | LM-generated | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDREuropeanaNlLegalRetrieval¶
Retrieve Dutch historical legal documents based on LLM generated queries. This dataset was created from records of the Europeana online collection by selecting scans of Dutch news articles
Dataset: jinaai/europeana-nl-legal_beir • License: cc0-1.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | nld | Legal | LM-generated | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRGitHubReadmeRetrieval¶
Retrieve GitHub readme files based their description. This dataset consists of rendered GitHub readmes in a variety of different languages, together with their accompanying descriptions as queries and their license in the license_type and license_text columns. This particular dataset is a subsample of 1000 random rows per language from the full dataset which can be found here.
Dataset: jinaai/github-readme-retrieval-multilingual_beir • License: multiple • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | ara, ben, deu, eng, fra, ... (17) | Web | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRHindiGovVQARetrieval¶
Retrieve Hindi government documents based on LLM generated queries.
Dataset: jinaai/hindi-gov-vqa_beir • License: not specified • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | hin | Government | LM-generated | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRHungarianDocQARetrieval¶
Retrieve Hungarian documents in various formats based on human annotated queries. Document Question answering from Hungurian doc qa dataset, test split.
Dataset: jinaai/hungarian_doc_qa_beir • License: cc-by-4.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | hun | Web | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRInfovqaRetrieval¶
Retrieve infographics based on human annotated queries. This dataset is build upon the corresponding dataset from the ViDoRe Benchmark.
Dataset: jinaai/infovqa_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Web | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRJDocQARetrieval¶
Retrieve Japanese documents in various formats based on human annotated queries. Document Question answering from JDocQAJP dataset, test split.
Dataset: jinaai/jdocqa_beir • License: cc-by-4.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | jpn | Web | LM-generated | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRJina2024YearlyBookRetrieval¶
Retrieve pages from the 2024 Jina yearbook based on human annotated questions. 75 human annotated questions created from digital version of Jina AI yearly book 2024, 166 pages in total.
Dataset: jinaai/jina_2024_yearly_book_beir • License: apache-2.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Web | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRMMTabRetrieval¶
Retrieve tables from the MMTab dataset based on queries. This dataset is a copy of the original test split from MMTab, taking only items where an 'original_query' is present, and removing the 'input' and 'output' columns, as they are unnecessary for retrieval tasks.
Dataset: jinaai/MMTab_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Web | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRMPMQARetrieval¶
Retrieve product manuals based on human annotated queries. 155 questions and 782 document images cleaned from jinaai/MPMQA, test set.
Dataset: jinaai/mpmqa_small_beir • License: apache-2.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Web | human-annotated | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRMedicalPrescriptionsRetrieval¶
Retrieve medical prescriptions based on templated queries. Source dataset https://huggingface.co/datasets/Technoculture/medical-prescriptions
Dataset: jinaai/medical-prescriptions_beir • License: not specified • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Medical | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDROWIDChartsRetrieval¶
Retrieve charts from the OWID dataset based on accompanied text snippets. We sampled a set of ~5k charts and articles from Our World In Data to produce this evaluation set. This particular dataset is a subsample of 1000 random charts from the full dataset which can be found here.
Dataset: jinaai/owid_charts_en_beir • License: cc-by-4.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Web | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDROpenAINewsRetrieval¶
Retrieve news articles from the OpenAI news website based on human annotated queries. News taken from https://openai.com/news/
Dataset: jinaai/openai-news_beir • License: not specified • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | News, Web | human-annotated | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRPlotQARetrieval¶
Retrieve plots from the PlotQA dataset based on LLM generated queries. Questions subsampled from PlotQA test set. It is following a subsample + LLM-based classification process, using LLM to verify the question quality, e.g. queries like How many different coloured dotlines are there will be filtered out.
Dataset: jinaai/plotqa_beir • License: cc-by-4.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Web | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRRamensBenchmarkRetrieval¶
Retrieve ramen restaurant marketing documents based on LLM generated queries. Marketing document from Ramen restaurants.
Dataset: jinaai/ramen_benchmark_jp_beir • License: not specified • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | jpn | Web | LM-generated | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRShanghaiMasterPlanRetrieval¶
Retrieve pages from the Shanghai Master Plan based on human annotated queries. The master plan document is taken from here.
Dataset: jinaai/shanghai_master_plan_beir • License: not specified • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | zho | Web | human-annotated | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRShiftProjectRetrieval¶
Retrieve documents with graphs from the Shift Project based on LLM generated queries. This dataset is build upon the corresponding dataset from the ViDoRe Benchmark.
Dataset: jinaai/shiftproject_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Web | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRStanfordSlideRetrieval¶
Retrieve scientific and engineering slides based on human annotated queries. Source dataset https://exhibits.stanford.edu/data/catalog/mv327tb8364
Dataset: jinaai/stanford_slide_beir • License: not specified • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Academic | human-annotated | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRStudentEnrollmentSyntheticRetrieval¶
Retrieve student enrollment data based on templated queries. This dataset is created from the original Kaggle Delaware Student Enrollment dataset. The charts are rendered and queries created using templates.
Dataset: jinaai/student-enrollment_beir • License: cc0-1.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Academic | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRTQARetrieval¶
Retrieve textbook pages (images and text) based on LLM generated queries from the text. Source datasets https://prior.allenai.org/projects/tqa
Dataset: jinaai/tqa_beir • License: cc-by-nc-3.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Academic | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRTabFQuadRetrieval¶
Retrieve tables from industry documents based on LLM generated queries. This dataset is build upon the corresponding dataset from the ViDoRe Benchmark.
Dataset: jinaai/tabfquad_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Academic | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRTableVQARetrieval¶
Retrieve scientific tables based on LLM generated queries. Source datasets https://huggingface.co/datasets/HuggingFaceM4/ChartQA or https://huggingface.co/datasets/cmarkea/aftdb
Dataset: jinaai/table-vqa_beir • License: not specified • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Academic | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRTatQARetrieval¶
Retrieve financial reports based on human annotated queries. This dataset is build upon the corresponding dataset from the ViDoRe Benchmark.
Dataset: jinaai/tatqa_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Web | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRTweetStockSyntheticsRetrieval¶
Retrieve rendered tables of stock prices based on templated queries. This dataset is created from the original Kaggle Tweet Sentiment's Impact on Stock Returns dataset.
Dataset: jinaai/tweet-stock-synthetic-retrieval_beir • License: not specified • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | ara, deu, eng, fra, hin, ... (10) | Social | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRWikimediaCommonsDocumentsRetrieval¶
Retrieve historical documents from Wikimedia Commons based on their description. Wikimedia Commons Documents. It contains images of (mostly historic) documents which should be identified based on their description. We extracted those descriptions from Wikimedia Commons. We have included the license type and a link (license_text) to the original Wikimedia Commons page for each extracted image.
Dataset: jinaai/wikimedia-commons-documents-ml_beir • License: multiple • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | ara, ben, deu, eng, fra, ... (20) | Web | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
JinaVDRWikimediaCommonsMapsRetrieval¶
Retrieve maps from Wikimedia Commons based on their description. It contains images of (mostly historic) maps which should be identified based on their description. We extracted those descriptions from Wikimedia Commons. We have included the license type and a link (license_text) to the original Wikimedia Commons page for each extracted image.
Dataset: jinaai/wikimedia-commons-maps_beir • License: multiple • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Web | derived | found |
Citation
@misc{günther2025jinaembeddingsv4universalembeddingsmultimodal,
archiveprefix = {arXiv},
author = {Michael Günther and Saba Sturua and Mohammad Kalim Akram and Isabelle Mohr and Andrei Ungureanu and Bo Wang and Sedigheh Eslami and Scott Martens and Maximilian Werk and Nan Wang and Han Xiao},
eprint = {2506.18902},
primaryclass = {cs.AI},
title = {jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval},
url = {https://arxiv.org/abs/2506.18902},
year = {2025},
}
MIRACLVisionRetrieval¶
Retrieve associated pages according to questions.
Dataset: nvidia/miracl-vision • License: cc-by-sa-4.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | ara, ben, deu, eng, fas, ... (18) | Encyclopaedic | derived | created |
Citation
@article{osmulski2025miraclvisionlargemultilingualvisual,
author = {Radek Osmulski and Gabriel de Souza P. Moreira and Ronay Ak and Mengyao Xu and Benedikt Schifferer and Even Oldridge},
eprint = {2505.11651},
journal = {arxiv},
title = {{MIRACL-VISION: A Large, multilingual, visual document retrieval benchmark}},
url = {https://arxiv.org/abs/2505.11651},
year = {2025},
}
Vidore2BioMedicalLecturesRetrieval¶
Retrieve associated pages according to questions.
Dataset: vidore/biomedical_lectures_v2 • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | deu, eng, fra, spa | Academic | derived | found |
Citation
@article{mace2025vidorev2,
author = {Macé, Quentin and Loison António and Faysse, Manuel},
journal = {arXiv preprint arXiv:2505.17166},
title = {ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval},
year = {2025},
}
Vidore2ESGReportsHLRetrieval¶
Retrieve associated pages according to questions.
Dataset: vidore/esg_reports_human_labeled_v2 • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Academic | derived | found |
Citation
@article{mace2025vidorev2,
author = {Macé, Quentin and Loison António and Faysse, Manuel},
journal = {arXiv preprint arXiv:2505.17166},
title = {ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval},
year = {2025},
}
Vidore2ESGReportsRetrieval¶
Retrieve associated pages according to questions.
Dataset: vidore/esg_reports_v2 • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | deu, eng, fra, spa | Academic | derived | found |
Citation
@article{mace2025vidorev2,
author = {Macé, Quentin and Loison António and Faysse, Manuel},
journal = {arXiv preprint arXiv:2505.17166},
title = {ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval},
year = {2025},
}
Vidore2EconomicsReportsRetrieval¶
Retrieve associated pages according to questions.
Dataset: vidore/economics_reports_v2 • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | deu, eng, fra, spa | Academic | derived | found |
Citation
@article{mace2025vidorev2,
author = {Macé, Quentin and Loison António and Faysse, Manuel},
journal = {arXiv preprint arXiv:2505.17166},
title = {ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval},
year = {2025},
}
Vidore3ComputerScienceRetrieval¶
Retrieve associated pages according to questions. This dataset, Computer Science, is a corpus of textbooks from the openstacks website, intended for long-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.
Dataset: vidore/vidore_v3_computer_science_mteb_format • License: cc-by-4.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_10 | deu, eng, fra, ita, por, ... (6) | Engineering, Programming | derived | created and machine-translated |
Citation
@misc{mace2025vidorev3,
author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
day = {5},
howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
journal = {Hugging Face Blog},
month = {November},
publisher = {Hugging Face},
title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
year = {2025},
}
Vidore3EnergyRetrieval¶
Retrieve associated pages according to questions. This dataset, Energy Fr, is a corpus of reports on energy supply in europe, intended for complex-document understanding tasks. Original queries were created in french, then translated to english, german, italian, portuguese and spanish.
Dataset: vidore/vidore_v3_energy_mteb_format • License: cc-by-4.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_10 | deu, eng, fra, ita, por, ... (6) | Academic, Chemistry, Engineering | derived | created and machine-translated |
Citation
@misc{mace2025vidorev3,
author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
day = {5},
howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
journal = {Hugging Face Blog},
month = {November},
publisher = {Hugging Face},
title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
year = {2025},
}
Vidore3FinanceEnRetrieval¶
Retrieve associated pages according to questions. This task, Finance - EN, is a corpus of reports from american banking companies, intended for long-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.
Dataset: vidore/vidore_v3_finance_en_mteb_format • License: cc-by-4.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_10 | deu, eng, fra, ita, por, ... (6) | Financial | derived | created and machine-translated |
Citation
@misc{mace2025vidorev3,
author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
day = {5},
howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
journal = {Hugging Face Blog},
month = {November},
publisher = {Hugging Face},
title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
year = {2025},
}
Vidore3FinanceFrRetrieval¶
Retrieve associated pages according to questions. This task, Finance - FR, is a corpus of reports from french companies in the luxury domain, intended for long-document understanding tasks. Original queries were created in french, then translated to english, german, italian, portuguese and spanish.
Dataset: vidore/vidore_v3_finance_fr_mteb_format • License: cc-by-4.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_10 | deu, eng, fra, ita, por, ... (6) | Financial | derived | created and machine-translated |
Citation
@misc{mace2025vidorev3,
author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
day = {5},
howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
journal = {Hugging Face Blog},
month = {November},
publisher = {Hugging Face},
title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
year = {2025},
}
Vidore3HrRetrieval¶
Retrieve associated pages according to questions. This dataset, HR, is a corpus of reports released by the european union, intended for complex-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.
Dataset: vidore/vidore_v3_hr_mteb_format • License: cc-by-4.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_10 | deu, eng, fra, ita, por, ... (6) | Social | derived | created and machine-translated |
Citation
@misc{mace2025vidorev3,
author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
day = {5},
howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
journal = {Hugging Face Blog},
month = {November},
publisher = {Hugging Face},
title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
year = {2025},
}
Vidore3IndustrialRetrieval¶
Retrieve associated pages according to questions. This dataset, Industrial reports, is a corpus of technical documents on military aircraft (fueling, mechanics...), intended for complex-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.
Dataset: vidore/vidore_v3_industrial_mteb_format • License: cc-by-4.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_10 | deu, eng, fra, ita, por, ... (6) | Engineering | derived | created and machine-translated |
Citation
@misc{mace2025vidorev3,
author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
day = {5},
howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
journal = {Hugging Face Blog},
month = {November},
publisher = {Hugging Face},
title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
year = {2025},
}
Vidore3PharmaceuticalsRetrieval¶
Retrieve associated pages according to questions. This dataset, Pharmaceutical, is a corpus of slides from the FDA, intended for long-document understanding tasks. Original queries were created in english, then translated to french, german, italian, portuguese and spanish.
Dataset: vidore/vidore_v3_pharmaceuticals_mteb_format • License: cc-by-4.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_10 | deu, eng, fra, ita, por, ... (6) | Medical | derived | created and machine-translated |
Citation
@misc{mace2025vidorev3,
author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
day = {5},
howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
journal = {Hugging Face Blog},
month = {November},
publisher = {Hugging Face},
title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
year = {2025},
}
Vidore3PhysicsRetrieval¶
Retrieve associated pages according to questions. This dataset, Physics, is a corpus of course slides on french bachelor level physics lectures, intended for complex visual understanding tasks. Original queries were created in french, then translated to english, german, italian, portuguese and spanish.
Dataset: vidore/vidore_v3_physics_mteb_format • License: cc-by-4.0 • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_10 | deu, eng, fra, ita, por, ... (6) | Academic, Engineering | derived | created and machine-translated |
Citation
@misc{mace2025vidorev3,
author = {Macé, Quentin and Loison, Antonio and EDY, Antoine and Xing, Victor and Viaud, Gautier},
day = {5},
howpublished = {\url{https://huggingface.co/blog/QuentinJG/introducing-vidore-v3}},
journal = {Hugging Face Blog},
month = {November},
publisher = {Hugging Face},
title = {ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-cases},
year = {2025},
}
VidoreArxivQARetrieval¶
Retrieve associated pages according to questions.
Dataset: vidore/arxivqa_test_subsampled_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Academic | derived | found |
Citation
@article{faysse2024colpali,
author = {Faysse, Manuel and Sibille, Hugues and Wu, Tony and Viaud, Gautier and Hudelot, C{\'e}line and Colombo, Pierre},
journal = {arXiv preprint arXiv:2407.01449},
title = {ColPali: Efficient Document Retrieval with Vision Language Models},
year = {2024},
}
VidoreDocVQARetrieval¶
Retrieve associated pages according to questions.
Dataset: vidore/docvqa_test_subsampled_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Academic | derived | found |
Citation
@article{faysse2024colpali,
author = {Faysse, Manuel and Sibille, Hugues and Wu, Tony and Viaud, Gautier and Hudelot, C{\'e}line and Colombo, Pierre},
journal = {arXiv preprint arXiv:2407.01449},
title = {ColPali: Efficient Document Retrieval with Vision Language Models},
year = {2024},
}
VidoreInfoVQARetrieval¶
Retrieve associated pages according to questions.
Dataset: vidore/infovqa_test_subsampled_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Academic | derived | found |
Citation
@article{faysse2024colpali,
author = {Faysse, Manuel and Sibille, Hugues and Wu, Tony and Viaud, Gautier and Hudelot, C{\'e}line and Colombo, Pierre},
journal = {arXiv preprint arXiv:2407.01449},
title = {ColPali: Efficient Document Retrieval with Vision Language Models},
year = {2024},
}
VidoreShiftProjectRetrieval¶
Retrieve associated pages according to questions.
Dataset: vidore/shiftproject_test_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Academic | derived | found |
Citation
@article{faysse2024colpali,
author = {Faysse, Manuel and Sibille, Hugues and Wu, Tony and Viaud, Gautier and Hudelot, C{\'e}line and Colombo, Pierre},
journal = {arXiv preprint arXiv:2407.01449},
title = {ColPali: Efficient Document Retrieval with Vision Language Models},
year = {2024},
}
VidoreSyntheticDocQAAIRetrieval¶
Retrieve associated pages according to questions.
Dataset: vidore/syntheticDocQA_artificial_intelligence_test_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Academic | derived | found |
Citation
@article{faysse2024colpali,
author = {Faysse, Manuel and Sibille, Hugues and Wu, Tony and Viaud, Gautier and Hudelot, C{\'e}line and Colombo, Pierre},
journal = {arXiv preprint arXiv:2407.01449},
title = {ColPali: Efficient Document Retrieval with Vision Language Models},
year = {2024},
}
VidoreSyntheticDocQAEnergyRetrieval¶
Retrieve associated pages according to questions.
Dataset: vidore/syntheticDocQA_energy_test_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Academic | derived | found |
Citation
@article{faysse2024colpali,
author = {Faysse, Manuel and Sibille, Hugues and Wu, Tony and Viaud, Gautier and Hudelot, C{\'e}line and Colombo, Pierre},
journal = {arXiv preprint arXiv:2407.01449},
title = {ColPali: Efficient Document Retrieval with Vision Language Models},
year = {2024},
}
VidoreSyntheticDocQAGovernmentReportsRetrieval¶
Retrieve associated pages according to questions.
Dataset: vidore/syntheticDocQA_government_reports_test_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Academic | derived | found |
Citation
@article{faysse2024colpali,
author = {Faysse, Manuel and Sibille, Hugues and Wu, Tony and Viaud, Gautier and Hudelot, C{\'e}line and Colombo, Pierre},
journal = {arXiv preprint arXiv:2407.01449},
title = {ColPali: Efficient Document Retrieval with Vision Language Models},
year = {2024},
}
VidoreSyntheticDocQAHealthcareIndustryRetrieval¶
Retrieve associated pages according to questions.
Dataset: vidore/syntheticDocQA_healthcare_industry_test_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Academic | derived | found |
Citation
@article{faysse2024colpali,
author = {Faysse, Manuel and Sibille, Hugues and Wu, Tony and Viaud, Gautier and Hudelot, C{\'e}line and Colombo, Pierre},
journal = {arXiv preprint arXiv:2407.01449},
title = {ColPali: Efficient Document Retrieval with Vision Language Models},
year = {2024},
}
VidoreTabfquadRetrieval¶
Retrieve associated pages according to questions.
Dataset: vidore/tabfquad_test_subsampled_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Academic | derived | found |
Citation
@article{faysse2024colpali,
author = {Faysse, Manuel and Sibille, Hugues and Wu, Tony and Viaud, Gautier and Hudelot, C{\'e}line and Colombo, Pierre},
journal = {arXiv preprint arXiv:2407.01449},
title = {ColPali: Efficient Document Retrieval with Vision Language Models},
year = {2024},
}
VidoreTatdqaRetrieval¶
Retrieve associated pages according to questions.
Dataset: vidore/tatdqa_test_beir • License: mit • Learn more →
| Task category | Score | Languages | Domains | Annotations Creators | Sample Creation |
|---|---|---|---|---|---|
| text to image (t2i) | ndcg_at_5 | eng | Academic | derived | found |
Citation
@article{faysse2024colpali,
author = {Faysse, Manuel and Sibille, Hugues and Wu, Tony and Viaud, Gautier and Hudelot, C{\'e}line and Colombo, Pierre},
journal = {arXiv preprint arXiv:2407.01449},
title = {ColPali: Efficient Document Retrieval with Vision Language Models},
year = {2024},
}